Calculation Policy

Mathematics

'Spirituality is the bitter-sweet yearning for beauty, truth, love and wonder beyond ourselves. It is a longing we pursue together and a treasure we glimpse in ourselves and one another and seek beyond us into eternity. It is life in all its fullness.'

Nebula Spirituality Statement

Nebula
where sars are bor

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the same learning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondary school.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes. While not a school policy, it is recommended to avoid ability groups. This presents a challenge in ensuring the more confident mathematicians are being extended. An extension tasks to deepen understanding is the most simplistic way around this.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to be used with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

> Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas. Drury, H. (2015)

Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. Jean Piaget's (1951)

Real things and structured images enables children to understand the abstract. The concrete and the images are a means for children to understand the symbolic so it's important to move between all modes to allow children to make connections. Morgan, D. (2016)

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

Reception

Addition

Objective/Strategy	Concrete	Pictorial	Abstract
Find 'one more than' a number	Dio pop Use cubes to count out a given number. Find and add one more.	Use pictures to find one more by counting on. Use a number line to support with writing the answers.	$\begin{aligned} & 4+1= \\ & 0+1= \\ & 2+1= \\ & 5+1= \end{aligned}$ \square \square \square \square Use cubes to count on as in the previous examples to support moving into the abstract.
To explore the composition of numbers to 10 . Automatically recall number bonds for numbers 0-5 and some to 10.	Use two colours of cubes to create a range of representations of a given number. Use Numicon to 'mirror' and match shapes to make a given number.	Velaratu 2 and 3 make 5 5 Whole 2 Part 3 Part Par Use pictures to represent numbers in different ways.	Emphasis should be on the introduction and building up of subject-specific vocabulary through practical work.

Year 1

Addition			
Objective/Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar	Use pictures to add two numbers together as a group or in a bar.	$\begin{align*} & 8=5+3 \tag{5}\\ & 5+3=8 \end{align*}$ Use the part, part, whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 This is an essential skill for column addition later.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10. $9+5=14$	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?

Year 1 Addition continued...			
Objective/Strategy	Concrete	Pictorial	Abstract
Represent \& use number bonds and related subtraction facts within 20	2 more than 5.		Include missing number questions: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$ Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7 .' ' 8 is 3 more than 5.'

Year 2 Addition											
Objective／Strategy	Concrete	Pictorial	Abstract								
Adding multiples of ten	$50=30=20$ Model using dienes and bead strings		$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$								
Use known number facts Part，part whole	Children explore ways of making numbers within 20	$\begin{gathered} 20=\square \\ \square+\square=20 \quad 20-\square=\square \\ \square+\square=20 \quad 20-\square=\square \end{gathered}$	Explore commutativity of addition by swapping the addends to build a fact family． Explore the concept of the inverse relationship of addition and subtraction and use this to check calculations． $\begin{array}{ll} \square+1=16 & 16-1=\square \\ 1+\square=16 & 16-\square=1 \end{array}$								
Using known facts		$\begin{aligned} \because+\therefore & =\therefore \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square+\text { 昭 } & =\text { 昌昭 } \end{aligned}$ Children draw representations of H, T and O	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$								
Bar model			23 25 $?$ $23+25=48$ 2								

Year 2

Addition continued...

Objective/Strategy	Concrete	Pictorial	Abstract
Add a two-digit number and ones	$17+5=22$ Use ten frame to make 'magic ten' Children explore the pattern: $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$		 Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Add a 2-digit number and tens	\mid $25+10=35$ Explore that the ones digit does not change.		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two 2-digit numbers	Model using dienes, place value counters and Numicon		

| Add three 1-digit numbers |
| :--- | :--- | :--- |
| Combine to make 10 first if possible, or |
| bridge 10 then add third digit |

Year 3 Addition			
Objective/Strategy	Concrete	Pictorial	Abstract
Column Addition-no regrouping (friendly numbers)	 Dienes or Numicon		
Add two or three 2 or 3digit numbers	Add together the ones first, then the tens.		$\begin{array}{r} 223 \\ +114 \\ \hline 337 \end{array}$
	 Move to using place value counters	Children move to drawing the counters using a 'tens and ones' frame.	Add the ones first, then the tens, then the hundreds.

Year 3

Addition continued...

| Objective/Strategy | Concrete | Pictorial |
| :--- | :--- | :--- | :--- |
| Estimate the answers to questions and
 use inverse operations to check answers | Abstract | |

Years 4, 5 and 6
Addition

Reception

Subtraction

Objective/Strategy	Concrete	Pictorial	Abstract
Find 'one less than' a number	Use cubes to count out a given number. 'Take one away' and count to find 'how many left'.	Use pictures to 'take one away'. Count to find out 'how many left'.	$3-1=$ \qquad Use concrete and pictorial examples to support moving into the abstract.
To explore the composition of numbers to 10. Automatically recall number bonds for numbers 0-5 and some to 10.	Use a feely bag to 'hide' a number of cubes. "I have 5 cubes altogether. I can see 2 cubes. How many have I hidden in my bag?" Throw beanbags into a hoop. How many went in? How many are left outside?		Emphasis should be on the introduction and building up of subject-specific vocabulary through practical work.

Year 1

Subtraction

Ohajective/Strategy

Year 1

Subtraction continued...

Objective/Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part, Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. Include missing number problems: 12 $\begin{aligned} & -?=5 \\ & 7=12-? \end{aligned}$
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?
Bar model Including the inverse operations.	$5-2=3$		$\mathbf{8}$ $\mathbf{2}$$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

Year 2
Subtraction

Objective/Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract without regrouping 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	Children draw representations of Dienes and cross off. $43-21=22$	$43-21=22$
'Make ten' strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

Year 3

Subtraction

Objective/Strategy	Concrete	Pictorial	Abstract
Subtract numbers mentally, including: three-digit number + ones three-digit number + tens three-digit number + hundreds			Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation. $\begin{gathered} 678=?-1 \\ 688-10=? \\ 678=?-100 \end{gathered}$
Column subtraction without regrouping 'Friendly numbers'	$47-32$ Use Base 10 or Numicon to model		$\begin{gathered} 47-24=23 \\ -40+7 \\ -20+4 \\ 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to PV counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange	Children may draw base ten or PV counters and cross off	Begin by partitioning into PV columns Then move on to formal method

Years 4, 5 and 6

Subtraction

Objective/Strategy	Concrete	Pictorial	Abstract
Year 4 subtract tens and ones with up to 4 digits introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw PV counters and show their exchange-see Year 3	$\begin{array}{r} 2^{6} 8^{\prime} 54 \\ -\quad 1562 \\ \hline 1192 \end{array}$ Use the phrase 'take and make' for exchange
Year 5 subtract with at least 4 digits, including money and measures subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point (up to 3 decimal places)	As per Year 4	Children to draw PV counters and show their exchange-see Year 3	$\begin{aligned} & { }^{2} X^{\prime \prime} X^{\prime} 0{ }^{\circ} \$^{\prime} 6 \\ & -\begin{array}{r} 2128 \\ \hline 28,928 \end{array} \\ & \hline \end{aligned}$
Year 6 Subtract with increasingly large and more complex numbers and decimal values (up to 3 decimal places)	As per Year 4	Children to draw PV counters and show their exchange-see Year 3	$\begin{array}{r} 014696,699 \\ -\quad 89,949 \\ \hline 60,750 \\ \hline \begin{array}{r} 106.3419 \mathrm{~kg} \\ 36.080 \mathrm{~kg} \\ \hline 69.339 \mathrm{~kg} \end{array} \\ \hline 69.3 \end{array}$

Reception Multiplication			
Objective/Strategy	Concrete	Pictorial	Abstract
Subitise Compare numbers	Roll a pair of dice to find doubles Match pairs of Dominoes to find doubles	Use pictures to find doubles by drawing the same again	Emphasis should be on the introduction and building up of subject-specific vocabulary through practical work.

Year 1 Multiplication			
Objective/Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling	Draw pictures to show how to double numbers Double 4 is 8	Partition a number and then double each part before recombining it back together $20+12=32$
Counting in multiples (2s, 5s, 10s)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. \square	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show $2 \times 3=6$ Draw and make representations	$2 \times 4=8$

Year 1 Multiplication continued...			
Objective/Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve problems	Write addition sentences to describe objects and pictures
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	Draw representations of arrays to show understanding	$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$

Year 2

Multiplication

Children should be able to recall and use multiplication and division facts for the 2,5 and 10 times tables.

Objective/Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	As per Year 1
Counting in multiples of $2,3,4$, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. $5+5+5+5+5+5+5+5=40$ Use bar models.	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. 3 3 3 3	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=\square$

Year 2

Multiplication continued...

Objective/Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters, cubes or Numicon. Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.	Use representations of arrays to show different calculations and explore commutativity.	Use an array to write multiplication sentences and reinforce repeated addition. $\left\lvert\, \begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}\right.$ $\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.			$\begin{aligned} & 2 \times 4=8 \\ & 4 \times 2=8 \\ & 8 \div 2=4 \\ & 8 \div 4=2 \\ & 8=2 \times 4 \\ & 8=4 \times 2 \\ & 2=8 \div 4 \\ & 4=8 \div 2 \end{aligned}$ Show all 8 related fact family sentences.

Year 3

Multiplication

Children should be able to recall and use multiplication facts for the 3,4, and 8 times tables.

Years 4, 5 and 6 Multiplication						
Objective/Strategy	Concrete	Pictorial				Abstract
Grid method to recap from Year 3 for 2-digit x 1-digit Move to multiplying 3-digit numbers by 1-digit Year 4 expectation	As per Year 3	As per Year 3				As per Year 3
Column Multiplication	Children can continue to be supported by place value counters at the stage of multiplication. This is initially done where there is no regrouping, such as: $321 \times 2=642$ It is important at this stage that they always multiply the ones first. The corresponding expanded multiplication is modelled alongside.	\times 4	$\begin{array}{\|l\|} \hline 300 \\ \hline 1200 \\ \hline \end{array}$	$\frac{20}{80}$	$\frac{7}{28}$	327 $\times 4$ 28 80 120 --------- $\rightarrow \begin{array}{r}327 \\ \times \quad 4 \\ \hline 1308\end{array}$

Years 4, 5 and 6

Multiplication

Objective/Strategy	Concrete	Pictorial	Abstract
Column multiplication (Long multiplication)	Manipulatives may still be used with the corresponding long multiplication modelled alongside.	Continue to use bar modelling to support pro	blem solving $\begin{aligned} & 1234 \\ & \times 16 \\ & \hline 7404(1234 \times 6) \\ & 12340 \\ & \hline 19,744 \end{aligned}$
Multiplying decimals up to 2 decimal places by a single digit.			Remind children that the single digit belongs in the Units column. Line up the decimal points in the question and the answer.

Reception Division			
Objective/Strategy	Concrete	Pictorial	Abstract
Explore the composition of numbers to 10	Share the cubes equally between 2 , e.g. "One for you, one for me". Show the children some unequal groups of objects. Is this fair or unfair? Are the groups the same or different?	There are 6 cakes. Can you share them? Try saying "one for me, one for you" Use pictures to share	Emphasis should be on the introduction and building up of subject-specific vocabulary through practical work.

$\text { Year } 1$ Division							
Objective/Strategy	Concrete	Pictorial					Abstract
Division as sharing (Use Gordon ITPs for modelling)	I have 10 cubes; can you share them equally in 2 groups?	Children use pictures or shapes to share quantities: 8 shared between 2 is 4 . Sharing: 12 shared between 3 is 4 Children use bar modelling to show and support understanding. $12 \div 4=3$					12 shared between 3 is 4. $12 \div 3=4$ $28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division as grouping	Divide quantities into equal groups Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $12 \div 3=4$ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$				

Year 2

Division

Objective/Strategy

Year 3 Division (Greater Depth Y2)						
Objective/Strategy	Concrete					Abstract
Division with remainders	Divide objects between groups and see how much is left over: $14 \div 3=4$ with 2 left over $96 \div 3$	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder: Draw dots and group them to divide an amount and clearly show a remainder: remainder 2 Use bar models to show division with remainders:				Complete written divisions and show the remainder using r.

Objective/Strategy
Divide at least 3-digit numbers by a 1-
digit number Short Division

Year 6

Division

| Objective/Strategy |
| :--- | :--- | :--- | :--- | :--- |
| Long division |

